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Abstract-A new boundary integral formulation for linear elasticity problems is presented in this
paper, Using both the new equation and Rizzo's boundary integral equation (1967, Quart. Appl.
Math. 25, 83-95), one obtains a set of boundary integral equations with complete stress tensor and
rotation tensor as the boundary values. This form of BEM has an advantage in that the boundary
stresses can be calculated directly from the numerical solution. It avoids the use ofthe hypersingular
kernel or tangential derivatives of displacement to find stresses on the boundary. The present
formulation for planar problems uses two kernels, one of which is logarithmic singular and the
other is l/r singular. The effectiveness of the approach is discussed through some test examples.

1. INTRODUCTION

The boundary element method (BEM) has grown considerably and been applied to solve
a wide range of engineering problems [see e.g. Brebbia et al. (1984)], Numerical solutions
of BEM to two-dimensional problems in linear elasticity was obtained by Rizzo (1967). In
the standard boundary element method the boundary values are displacements and trac­
tions. For calculating the boundary stresses, the popular approach is to use the tangential
derivatives of nodal displacements and nodal tractions obtained by the boundary element
analysis [see e.g, Telles (1987)]. Cruse and Vanburen (1971) proposed a boundary integral
equation relating the stress components on the boundary nodal point to the displacements
and tractions over the entire boundary. This approach is quite the same as that in the
computation of stress components at internal points, and a special integration scheme, such
as that presented by Kutt (1975) or by Guiggiani and Gigante (1990), must be utilized in
the numerical evaluation of the principal values.

The present paper discusses the two-dimensional elasticity problems. A new boundary
integral equation is formulated with the new stress components as boundary variables. The
stress tensors in the domain and the corresponding fundamental solutions are derived by
the author. It has some advantages over the conventional BEM where the boundary stress
components should be derived by differentiating the displacement at the boundary with
respect to the coordinates. In the present BEM formulation, the singular orders of the two
kernels are the same as that in the standard BEM formulation for planar problems, i.e. one
of which is logarithmic singular and the other is l/r singular.

2. BASIC FORMULATION

Considering the two-dimensional elasticity problems, the Cartesian coordinate system
is Xi (i = 1,2). For an isotropic elastic material, the displacements, strains, stresses, body
forces and tractions on the boundary are Ui, Bij, (Jij, hi and Pi' respectively. The simplest
procedure to obtain complete stress components on the boundary is to solve the following
equations:

(1)

(2)
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where
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Ui.jli = audas, (3)

(4)

in which G is the shear modulus, v is the Poisson's ratio, ~ij is the Kronecker delta symbol,
nj is the unit normal vector and lj is the unit tangential vector. An important remark is that
all the expressions presented here are assumed to be valid for plane stress problems. The
plane strain case can be dealt with by the same equations, provided that v is replaced by
'Ii = v1(1- v). The right-hand side of eqn (3) is obtained approximately by differentiating
the interpolation function of the displacement. Equations (1)-(3) are solved for (iij at a
nodal point on the boundary by giving the corresponding values ofPi and 8u;/iJs. Although
this approach is very simple and efficient, the obtained stress components are always
discontinuous between the neighboring elements when CO elements are used, and the
accuracy of them becomes lower near a corner point and the stress concentration region.

Another approach to calculate the boundary stress components was proposed by Cruse
and Vanburen (1971):

where Dtk and Stk are given by (plane stress)

(6)

(7)

The right-hand side of eqn (5) can be evaluated, after all the displacements and tractions
on the boundary are obtained, by the boundary element analysis. A disadvantage of this
approach is that all the integrals in the Cauchy principal value sense must be evaluated, and
a special integration scheme must be utilized in the numerical computation ofhypersingular
integrals as they appear in eqns (5) and (7).

3. NEW WEIGHTED RESIDUAL EQUATION

The Navier equilibrium equation in terms of displacements is given below:

(8)

The components of the displacement can be derived from the Galerkin vector F; (Fung,
1965)
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2 1+v
U; = V F;- -2-Fj,j;'

From eqn (2) we can derive expressions for the stresses in terms of F;:

if Fj satisfies the equation
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(9)

(10)

(11)

The solutions F; are called biharmonic functions for b; = O. The representation of bi­
harmonic functions F;(z) by analytic functions leads to a general form of a complex variable
z=x+iy:

F;(z) = ze/>;(z) + t/J; (z) , (12)

where e/>;(z) and t/J;(z) are two analytic functions, Substitution of eqn (12) into eqn (10)
gives

(13)

in which O"ij(x,y) and i1'ij(x,y) are real and imaginary parts of O";j(z), respectively. By means
of the Cauchy-Riemann differential equations and the analytic functions e/>;(z) and t/J;(z), a
separation into real and imaginary parts determines the relation

1+v )0' II - -1- GUk k-v '
l+v .

0"21 - -2- G(u1,2 - U2, d
(14)

From eqns (2) and (8) it is verified that

I-v
i1'.+--e·b=O

I),) 2 )1)

or

where eij represents the alternating tensor. Aij is given by

(15)

(16)

(17)

Multiplying eqn (16) by the weighed residual function u~ and integrating it over the domain
Q gives

i[A .. -(I +V)G(UI 2-U2 I) +ve..b.]u:"dQ = O.').) ., ,I I) J r
n

(18)

By substituting Aij into eqn (18) and integrating it by parts twice, the resulting equation is
of the form
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in which

T*. = - 2G (u*.-vu*)-VGUtkblJ 1_ V I,J J, I ,IJ

(20)

(21)

(22)

(23)

where wij is the infinitesimal rotation tensor. It can be seen that the operator in eqn (22) is
different from that in the equilibrium eqn (8).

4, FUNDAMENTAL SOLUTIONS AND BOUNDARY INTEGRAL FORMULATION

In eqn (18) the weighted residual function uns defined. We suppose that the fun­
damental solution Uij is a particular solution of the equation

(24)

where Lij denotes the components of the operator (22), b(e,X) is the Dirac delta function,
eis the singular source point and X is the field point. According to Hormander's (1963)
operator method, the solution may be found:

Using eqns (20) and (21), one finds

2G
D' k = ---(Uk-VUk )-vGU,AIJ 1_ V IJ, I ,J I , J

The weighted residual statement (19) can then be written as

(25)

(26)

(27)

ClkUk(e) +tTik(e, X) Uk (X) dr(X) +InVUlk(e, x)ekjbj(x) dn(X)

= IrUik(e, X)[Ukj(X) + 2(1 + V)GWkj(X)]tj dr(X)· (28)

If eE n, Clk is derived from
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Clk = ejk'
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(29)

A boundary integral equation for the new formulation can be obtained by putting the
source point ~ at the boundary. In this case, the coefficient Cjk is evaluated in the Appendix.

5. BOUNDARY CONDITION

Equation (28) shows the boundary integral formulation with the boundary variables
Uj and [l1ij+ 2(1 +v)Gwij]tjo If the local coordinate system coincides with the unit vectors
(0, t) on the boundary, the boundary equilibrium conditions are

(30)

(31)

where Pnm Pns are surface traction components, and the third component of the complete
stress tensor on the boundary is

(32)

The new variables in eqn (28) may be represented as

(33)

in which

(34)

A very interesting point is that the present approach can take Pss as one of the boundary
values. Substitution of eqn (33) into eqn (28) gives

CikUi~) +LTjk(~' X)Uk(X) dr(X) +favUUc(~' x)eigbj(x) dn(X)

= LUjk(~,x)nk[Pns(X)+2(I+v)Gwns(X)]dr(X)+LUjk(~,X)tkPss(X)dr(X)· (35)

In eqn (35) the boundary values are Uj,Pns+2(1 +v)Gwns andpss'
When the displacements are prescribed at the boundary, the components

Pns +2(1 +v)Gwns and Pss can be calculated directly from the numerical solution. The bound­
ary traction components can be solved by the standard BEM. For the mixed boundary
conditions, the unknowns of the boundary displacements and tractions are solved by the
standard BEM. Then the boundary stress component Pss can be determined from eqn (35).
The complete stress tensor l1ij on the boundary is easily obtained from Pnm Pns and Pss.
Meanwhile, the rotation tensor Wlj (Wl2 or W nS) on the boundary can be given by eqn (33).

6. STRESSES AT INTERNAL POINTS

Once the unknowns are solved over all the surface one can find the internal dis­
placements using eqn (28). The stress state at any internal point can be obtained by
combining the derivatives of eqn (28) with respect to the coordinates of ~ to produce the
strain tensor and then substituting the result into Hooke's law. The final expression is
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O'ii~) = tDijk(~' x)[O'kixJti +2(l +v)GWkix)tJ dr(X)

- f/ijk(~' X)Uk(X) dr(X) - tDijk(~' x)vek/Mx) dO(X) (36)

(38)

in which

(39)

7. NUMERICAL RESULTS

Numerical implementation of eqn (28) or eqn (35) is carried out in standard fashion.
Numerical results are obtained by using straight boundary elements with piecewise linear
representation of the boundary variables. Poisson's ratio v is 0.3. The singular integration
with Til< (~,X) in eqn (28) or eqn (35) has a singularity l/r; these terms are calculated by
the rigid motion scheme. The integration with a singularity of type In(r) is carried out
analytically. The rest of the integrations are derived by using four integration points of the
Gaussian quadrature.

Example 1. A square plate is stretched by given boundary displacements
A square plate is stretched by given displacements over two opposite sides (Fig. 1).

The boundary of the plate is discretized into eight elements. Table 1 shows the numerical

4

Fig. 1. A square plate stretched by given boundary displacements.
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Table 1. A square plate is stretched by given boundary displacements

Node Present solution Exact
number p,~ P;;' P.~ p;;,

I 0.3000ID+OO O.3000ID+00 0.300 0.300
2 0.29999D+00 O.IOOOOD+Ol 0.300 1.000
3 0.99998D+00 0.99998D+00 1.000 1.000
4 O.IOOOOD+Ol 0.3000ID+00 1.000 0.300
5 0.3000ID+00 0.3000ID+00 0.300 0.300
6 0.29999D+00 0.99998D+00 0.300 1.000
7 O. 10000D +01 O.l OOOOD + 01 1.000 1.000
8 O.lOOOOD+OI 0.29999D+00 1.000 0.300

values ofPm in which P:' and P;; stand for the stresses of discontinuous outward normals
at a point; pi; equals p;; for the smooth boundary.

Example 2. A plate with an elliptical hole subjected to tensile stress at infinity
We consider an infinite plate with an elliptical hole subjected to a uniform tensile stress

(0'0 = 1) at infinity as shown in Fig. 2(a). It can be solved by the superposition of the
solutions in Figs 2(b) and (c). At first the boundary displacements are solved by the
standard BEM, and then the boundary stress Pss is obtained by the present approach.

In the circular hole case (a/b I), a quarter of the circle is modeled by symmetry and
divided into 10 elements of equal length. The boundary stresses 0'0 (angle evaries from 0
to n/2) and their errors are plotted in Figs 3 and 4. The internal stresses O'yy(y = 0, X > a)
and their errors are plotted in Figs 5 and 6. They show good agreement with the exact
solutions as compared with those by standard BEM [see e.g. Telles (1987)].

For various values of alb, a quarter of the elliptical hole is divided into 15 elements
with the length ratio 1.1 of the adjacent elements. The stress concentrations 0'0/0'0

(x = a,y = 0) are plotted in Fig. 7. Given the values of alb and considering the various
meshes, the results of the stress concentration O'o/O'o(x = a,y = 0) are listed in Table 2.

8. CONCLUSIONS

(l) The present paper provides a new type BEM formulation with the boundary
variables UJ, u2, Pns+2(l +v)Gwns and PSS' which is different from the standard BEM
approach that the stress component Pss should be calculated by differentiating the boundary
displacements with respect to the coordinates.

t t ++t t t t t t +t

+++++t
(al

+
(bl

+t
(el

Fig. 2. A plate with an elliptical hole subjected to uniform tensile stress at infinity.
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Table 2. Stress concentration (l/ll(lo(x = a, y = 0) of the elliptical hole

alb = 4 (exact (l/lIO'/I = 9)
Standard

NOE Present BEM

alb = 10 (exact (l/lIr1o = 21)
Standard

NOE Present BEM

10 8.5587 8.2318 10 16.747 13.878
15 8.8749 8.7722 15 19.339 18.236
20 8.9495 8.9136 20 20.328 19.901
25 8.9687 8.9550 25 20.654 20,487
30 8.9731 8.9674 30 20.758 20.692

NOE = number of elements.
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(2) The singular orders of the two kernels in the present BEM equation (28) or equation
(35) are the same as those in the standard BEM for planar problems-Vii is logarithmic
singular and Tij is l/r singular.

(3) The new coefficient Cij (~) can be calculated by rigid motion scheme as the standard
BEM approach does.

(4) Numerical implementation of the present BEM can be carried out in standard
fashion. For calculating boundary stresses this approach has an advantage over that
proposed by Cruse and Vanburen (1971) with l/r2 singularity.

(5) The internal stress tensors and associated fundamental solutions related to this
theory are deduced by the author. The present approach is suitable to solve the stress
concentration, fracture mechanics and also can be used to solve other convention field
mechanics problems.
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APPENDIX

Evaluation ofC;k for the new BEM formulation
Referring to eqn (28), one considers the source point ~ at a corner of the outer boundary (Fig. AI). Assuming

that the body under consideration can be augmented by a small region f" which is part of a circle of radius E

centered at point ~ on the boundary f, and the functions u,(X) satisfies a Holder condition at ~, we have the
coefficient Cli on the boundary

(AI)

Fig. AI.
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Nhen integrating along the circle r" the relations exist

;0 eqn (AI) can be written as

- 1 JC'i = C,i - 81!v [2(1 +3v)r,;fj+2(1-v)rJ t,J dr
r,

I fO,+n/2
= Cij--8 [2(1+3v)n;t,+2(I-v)n;t,JdO,

]tv 01-rcj2

Nhen the boundary is smooth at the source point (, i,e. 01 = 02' then C'i is
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(A2)

(A3)

(A4)

f the source point ( is located at the boundary, the coefficient Cij in the boundary integral equation (28) should
>e replaced by Cjj. The coefficient Cij may be evaluated indirectly by the rigid body motion scheme. It is noted
hat, in the stress-free problem,

(A5)


